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Abstract
Using the general expressions for level shifts obtained from the master equation
for a small system interacting with a large one considered as a reservoir, we
calculate the dispersive potentials between an atom and a wall in the dipole
approximation. We analyse in detail the particular case of a two-level atom
in the presence of a perfectly conducting wall. We study the van der Waals
as well as the resonant interactions. All distance regimes as well as the high
and low temperature regimes are considered. We show that the Casimir–Polder
interaction cannot be considered as a direct result of the vacuum fluctuations
only. Concerning the interaction between the atom and the wall at high
temperatures, we show that a saturation of the potential for all distances occurs.
This saturated potential coincides precisely with that obtained in the London–
van der Waals limit.

PACS numbers: 12.20.Ds, 34.20.Cf

1. Introduction

The explanation for the force between two neutral and non-polar but polarizable molecules,
usually called dispersive forces, was possible only after the advent of quantum mechanics.
In 1930, F London [1] obtained the interaction potential between two neutral hydrogen
atoms in their respective ground states and separated by a distance much larger than the
Bohr radius in the static electric dipole limit, λ0 � r � a0, where λ0 = 2πc/ω0 is
the wavelength of the dominant transition and a0 is the Bohr radius. London’s result is
V (r) � −6.5e2a5

0

/
r6 � −3h̄ω0α

2
0

/
4r6.

In 1948, Casimir and Polder [3] considered for the first time the influence of retardation
effects on the van der Waals forces between two atoms as well as on the force between an
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atom and a perfectly conducting wall. They showed that in the retarded limit the interaction
falls as 1/r7 for two atoms (in contrast to London’s 1/r6 result) and as 1/r4 for an atom and
a perfectly conducting wall, in contrast with the short distance limit (that falls as 1/r3) [4].

In 1956, E M Lifshitz developed a general theory of dispersive van der Waals forces
between dielectric macroscopic bodies using a non-perturbative approach [5], once the
perturbative expansion for many-body interaction breaks down due to the non-additivity of the
van der Waals forces. Lifshitz derived a powerful expression for the force at finite temperature
between two semi-infinite dispersive media characterized by an electric permittivity and
separated by a slab of any other dispersive medium. He also showed that the Casimir–
Polder force is a limiting case when one of the media is sufficiently dilute such that the
force between the slabs may be obtained by direct pair-wise integration of a single atom–wall
interaction [6].

Since then a wide knowledge about the behaviour and nature of dispersive forces has
been achieved. In the following decades, many works have appeared, like those made by A D
McLachlan [7], in the 60s, where the recently compiled linear response theory developed by
R Kubo [8] was applied. In 1970, G Feinberg and J Sucher [9] treated the electric and magnetic
contributions to van der Waals interaction in the same foot. In the late 60s and during the 70s
some authors analysed the interaction between an excited atom and a wall [10–12]. The first
of these works, made by H Morawitz, considered the level and frequency shifts of an excited
atom in the presence of a perfectly conducting wall using the image method, which led him
to the discovery of the resonant dispersive interaction. In the 80s and 90s the non-additivity
character of the van der Waals forces was well exploited [13, 14]; nice works concerning
level shifts of atoms and dispersive interactions in cavities [15–19] and thermal contributions
to the Casimir–Polder interaction have also been studied [20–22]. For more details and an
exhaustive list of references on this and related topics see the recent review by Buhmann and
Welsch [23]. In the last few years, the interest for van der Waals and Casimir–Polder forces has
increased mainly due to better experimental techniques and the development of nanosciences.
The influence of these forces in the stability of Bose–Einstein condensates [24, 25] and on
factoring and doping carbon nanotubes are branches of great activity nowadays [26–28].

This paper is a natural sequence of a previous one [29], where we studied the van der Waals
interaction between a two-level atom and a perfectly conducting wall using the density matrix
formalism [30]. Here, using the same formalism, we study the excited state contributions to the
interaction, both in vacuum and thermal states of the electromagnetic field. We give simple
interpretations to the ground state contribution (van der Waals interaction) and the excited
state contribution (resonant interaction) in terms of the non-resonant and resonant parts of the
atomic polarizability. Considering the thermal state of the electromagnetic field, we analyse
both high and low temperature limits, h̄ω0 � kBT and h̄ω0 � kBT respectively, and show
that in the former the interaction between the two-level system and the perfectly conducting
wall is temperature independent and behaves exactly as in the London–van der Waals limit at
zero temperature for all distances.

2. Level shifts and exchange energy rates

In this section, we obtain the level shifts and the exchange energy rates of a multi-level system
interacting with the electromagnetic field in the dipole approximation. In the first case, if we
consider the boundary conditions imposed to the field by the presence of a given wall, we
can extract the position-dependent part, which gives, by derivation, the atom–wall dispersive
forces.
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2.1. General expressions

Our starting point is the master equation for a small system S (the atom) which interacts
weakly with a large one R, that may be considered as a reservoir (quantized electromagnetic
field), by the interaction Hamiltonian

V = −
∑

j

SjRj , (1)

where Sj and Rj are observables associated with S and R, respectively. In the Schrödinger
picture, the master equation may be written as [30–32]

d

dt
ρS

ab(t) = −ıωabρ
S
ab(t) +

∑
c,d

Jabcdρ
S
cd(t), (2)

Jabcd = − 1

h̄2

∑
j,k

∫ ∞

0
dτ

{
gR

jk(τ )

[
δbd

∑
n

Sj
anS

k
nc e−ıωncτ − Sk

acS
j

db e−ıωacτ

]

+ gR
kj (−τ)

[
δac

∑
n

Sk
dnS

j

nb eıωnd τ − Sj
acS

k
db eıωbd τ

] }
, (3)

where ρS
ab = 〈a|ρS |b〉 is the matrix element of the density operator ρS , associated with the

system S, between the energy eigenstates |a〉 and |b〉 with eigenvalues Ea and Eb of the
unperturbed Hamiltonian operator HS of S (HS |a〉 = Ea|a〉); S

j

ab = 〈a|Sj |b〉 is the matrix
element of the observable Sj and ωab = (Ea − Eb)/h̄ is the transition frequency between the
states |a〉 and |b〉. The function gR

jk(τ ) that appears in equation (3) is defined as

gR
jk(τ ) = [

gR
kj (−τ)

]∗ = TrR[ρRRj (τ )Rk(0)] =
∑

µ

pµ

∑
ν

Rj
µνR

k
νµ eıωµντ , (4)

where R
j
µν = 〈µ|Rj |ν〉 is the matrix element of the observable Rj between the energy

eigenstates |µ〉 and |ν〉 with energy eigenvalues Eµ and Eν of the unperturbed Hamiltonian
operator HR of R (HR|µ〉 = Eµ|µ〉); ωµν = (Eµ −Eν)/h̄ is the transition frequency between
the states |µ〉 and |ν〉 and ρR is the density matrix associated with R, considered constant in
time and diagonal in the {|µ〉} base-ket, so that

ρR =
∑

µ

pµ|µ〉〈µ|, (5)

where pµ is the statistical weight of the state |µ〉 for a given ensemble. For the seek of
completeness, let us make a brief resume of the steps for derivation of equations (2) and (3)
and, from these, equations (22)–(25). A careful deduction of these equations can be found in
[30–32].

Equations (2), (3) were obtained from the equation of the time evolution of the total
density matrix ρ(t) � ρS(t) ⊗ ρR,−ıh̄ρ̇(t) = [ρ(t),H ], where H = HS + HR + V is the
Hamiltonian of the total system S+R. Then, one has made implicitly the assumption that there
are two very different time scales in the evolution of the total system S +R: the characteristic
time TS in which the average values of the observables of S change significantly and the
characteristic time τc, which is, crudely speaking, the width of gR

jk(τ ) and measures the time
of the fluctuations of the reservoir observables. The approximations used in derivation of the
above equations are based on the following conditions,

τc � 	t � TS, (6)
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where 	t is the time interval that enters in the calculation of the time derivative in equation (2).
Last condition tells us that the master equation is a coarse-grained rate, since rapid variations
of ρS that occur in times of order of τc are smoothed in the interval 	t ; since we are interested
in times of the order of TS , this smoothing remains a good approximation once condition (6)
is satisfied. Another supplementary condition for obtaining equation (2), which makes the
coefficients Jabcd independent of 	t , is that frequency differences between the elements of
the density matrix should be very small compared to 1/	t , so that |ωac − ωbd |	t � 1. Last
condition is called secular condition and the sum in equation (2) is only over secular terms
(terms that satisfy the secular condition).

Using more two assumptions, one may conveniently split equation (2) into two other ones:
an equation for the diagonal elements ρS

aa (populations) and another for the non-diagonal
elements ρS

ab, with a 	= b (coherences). For the populations, the assumption is that there is
no coherence ρS

cd in the sum in equation (2) with too low frequency, so that ωcdTS � 1. This
implies that all coherences are not secular terms and the master equation for the populations
ρS

aa may be put into the form

d

dt
ρS

aa(t) =
∑

c

(
ρS

cc (t) 
c→a − ρS
aa(t)
a→c

)
, (7)


c→a = 2π

h̄

∑
µ

pµ

∑
ν

|〈µ, c|V |ν, a〉|2δ(Eµ + Ec − Eν − Ea), (8)

where V is the interaction Hamiltonian given by (1). The quantity 
c→a may be interpreted
as the transition rate probability between the states |c〉 and |a〉 as a result of the interaction of
the system with the reservoir.

In order to obtain the equation for coherences we make the second assumption, namely,
we consider only the non-degenerate case: the frequency ωab differ from all other frequencies
ωcd by a quantity of order (or larger than) 1/	t , that is, |ωac − ωbd | > 1/	t � 1/TS . Then,
the only secular term in equation (2) is that one which couples the coherence ρS

ab with itself,
so that the equation for this coherence may be written as

d

dt
ρS

ab(t) = −ı(ωab + 	ab)ρ
S
ab(t) − 
abρ

S
ab(t), a 	= b (9)

where 	ab = 	a − 	b, 
ab = 
ad.
ab + 
nad.

a + 
nad.
b ,

	n = 1

h̄2

∑
µ

pµ

∑
ν

∑
j

P
|〈µ, n|V |j, ν〉|2

ωµν − ωjn

(10)


ad.
ab = −2π

h̄2

∑
µ

pµ

∑
ν

〈µ, b|V |b, ν〉〈ν, a|V |a, µ〉δ(ωµν) (11)


nad.
n = π

h̄2

∑
µ

pµ

∑
ν

∑
j

|〈µ, n|V |j, ν〉|2δ(ωµν − ωjn) = 1

2

∑
j


n→j (12)

and the symbol P in (10) means the Cauchy principal value. From (9) one may conclude that
the coherence ρS

ab, as a result of its interaction with the reservoir, oscillates with a frequency
shifted by 	ab from its free value ωab and decays exponentially with a characteristic time
given by 1/
ab. From equations (7), (8) and (10) one may obtain the exchange energy rates
between the system and the reservoir and the energy level shifts of the system, respectively,
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since frequency shifts result from level shifts. Recall that δEa = h̄	a is the energy shift of
the state |a〉 (and equivalently for |b〉).

For energy rates, considering the time derivative of the average value of the Hamiltonian
of the system in Schrödinger and Heisenberg pictures, we find

d〈HS〉a
dt

=
∑

b

(Eb − Ea)
a→b =
∑

b

h̄ωba
a→b, (13)

which may be interpreted as a net rate of changing the average value of the energy of the
system S when it is in the state |a〉 or, in other words, the exchange energy rate between S and
R for the state |a〉. It is possible to put the last result into a more intuitive form that clearly
exhibits the roles played by S and R. Returning to equation (4), one may show that real and
imaginary parts of gR

jk(τ ) are related to the symmetric correlation function CR
jk(τ ) and the

linear susceptibility χR
jk(τ ) [32, 33],

CR
jk(τ )=Re

[
gR

jk(τ )
] =

∑
µ

pµ

∑
ν

Rj
µνR

k
νµ cos(ωµντ ), (14)

χR
jk(τ )= 2

h̄
�(τ)Im

[
gR

jk(τ )
] = −2

h̄

∑
µ

pµ

∑
ν

Rj
µνR

k
νµ�(τ) sin(ωµντ ), (15)

where �(τ) is the Heaviside step function. In the frequency space, we have

ĈR
jk(ω) =

∫ ∞

−∞
dτCR

jk(τ ) eıωτ = π
∑

µ

pµ

∑
ν

Rj
µνR

k
νµ[δ(ω + ωµν) + δ(ω − ωµν)], (16)

χ̂R
jk(ω) =

∫ ∞

−∞
dτχR

jk(τ ) eıωτ = χ̂ ′R
jk (ω) + ıχ̂ ′′R

jk (ω), (17)

χ̂ ′R
jk (ω) = −1

h̄

∑
µ

pµ

∑
ν

Rj
µνR

k
νµ

[
P

1

ωµν + ω
+ P

1

ωµν − ω

]
, (18)

χ̂ ′′R
jk (ω) = π

h̄

∑
µ

pµ

∑
ν

Rj
µνR

k
νµ[δ(ωµν + ω) − δ(ωµν − ω)]. (19)

The symmetric correlation function given by (16) may be interpreted as a dispersion of the
observables Rj and Rk around a frequency ω. It is a measure of the fluctuations of the
reservoir dynamical variables. The real part of the susceptibility defined in equation (18) is
called the dispersive or reactive part and is related to the polarization of a system by an external
perturbation. On the other hand, the imaginary part is directly responsible for the absorption
and dissipation of energy by the system and, for this reason it is called dissipative part of
susceptibility [34].

Now, let us come back to equations (10) and (13). Using the quantities defined in
equations (16)–(19), the energy level shifts and the exchange energy rates may be cast into the
form

δEa = δEf r
a + δErr

a , (20)

d〈HS〉a
dt

= Q̇a = Q̇f r
a + Q̇rr

a , (21)

δEf r
a = −1

2

∑
j,k

∫ ∞

−∞

dω

2π
χ̂

′S,a
jk (ω)ĈR

kj (ω), (22)
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δErr
a = −1

2

∑
j,k

∫ ∞

−∞

dω

2π
χ̂ ′R

jk (ω)Ĉ
S,a
kj (ω), (23)

Q̇f r
a =

∑
j,k

∫ ∞

−∞

dω

2π
ωχ̂

′′S,a
jk (ω)ĈR

kj (ω), (24)

Q̇rr
a = −

∑
j,k

∫ ∞

−∞

dω

2π
ωχ̂ ′′R

jk (ω)Ĉ
S,a
kj (ω), (25)

where

Ĉ
S,a
jk (ω) = π

∑
n

Sj
anS

k
na[δ(ω + ωan) + δ(ω − ωan)], (26)

χ̂
′S,a
jk (ω) = −1

h̄

∑
n

Sj
anS

k
na

[
P

1

ωan + ω
+ P

1

ωan − ω

]
, (27)

χ̂
′′S,a
jk (ω) = π

h̄

∑
n

Sj
anS

k
na[δ(ωan + ω) − δ(ωan − ω)] (28)

are the symmetric correlation functions and the dispersive and dissipative parts of the
susceptibility of the system S in the state |a〉, respectively. Equations (22)–(25) are the
general expressions for the level shifts and the exchange energy rates of a small system
interacting with a reservoir.

The physical interpretation of equations (22) and (23) is simple. The former gives the
contribution to the level shift due to the polarization of the system S by the fluctuations of the
reservoir (f r) and the latter gives the contribution of the polarization of the reservoir by
the fluctuations of the system, or the reservoir reaction (rr) contribution.

A similar interpretation may be done for equations (24) and (25). The first of them may
be understood as the power absorbed by the system S from the reservoir fluctuations and the
second represents the power dissipated by the system or, equivalently, the power lost to the
reservoir.

2.2. Dipole interacting with the radiation field

Let us consider a small neutral but polarizable system which interacts weakly with the radiation
field. Assuming the dipole approximation and considering the total quantized electric field
operator at the position x of the centre of mass of the system as a sum over all possible modes,
the interacting Hamiltonian takes the form

V = −d · E(x, t) = e
∑
kλ

∑
j

(
xjf

j

kλ(x) eıωkt a
†
kλ + h.c.

)
, (29)

where d = −er is the dipole moment operator of the system, −e its electric charge,
r = (x1, x2, x3) is the position operator of the charge and functions fkλ(x) = x̂j f

j

kλ(x)

(Einstein’s convention is assumed), where x̂j is the unitary vector in the direction of component
xj of r, carry the information about the boundary conditions and possible source contributions.
The index j runs over Cartesian components (j = 1, 2, 3) and the index kλ specifies a field
mode, where k is its wave-vector and λ its corresponding polarization. Operators akλ and a

†
kλ

are the annihilation and creation operators, respectively, of one photon in the mode kλ and
satisfy the usual commutation relations

[akλ, ak′λ′] = [
a
†
kλ, a

†
k′λ′

] = 0,
[
akλ, a

†
k′λ′

] = δkk′δλλ′ . (30)
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Choosing the coordinate axis in a manner such that the susceptibility and the correlation
function of the system are diagonal we have

Ĉ
S,a
jk (ω) = Ĉaj (ω)δjk, (31)

χ̂
′S,a
jk (ω) = α′

aj (ω)δjk, (32)

χ̂
′′S,a
jk (ω) = α′′

aj (ω)δjk, (33)

where

Ĉaj (ω) = πh̄
∑

b

α
j

abωba

2
[δ(ωba + ω) + δ(ωba − ω)], (34)

α′
aj (ω) =

∑
b

α
j

abωba

2

[
P

1

ωba + ω
+ P

1

ωba − ω

]
, (35)

α′′
aj (ω) = π

∑
b

α
j

abωba

2
[δ(ωba − ω) − δ(ωba + ω)], (36)

and α
j

ab = −2e2|〈a|xj |b〉|2/h̄ωab is the static polarizability of the system in the direction x̂j

between the states |a〉 and |b〉. Using last equations in (22)–(25), making |µ〉 = |nkλ〉 in
equation (5) (which means a Fock state with nkλ photons in the mode kλ) and performing the
integration on ω, we obtain, after some calculations,

δErr
a = −1

2

∑
j

∑
kλ

α
′(−)
aj (k)

∣∣f j

kλ(x)
∣∣2

, (37)

Q̇rr
a = −

∑
j

∑
kλ

ckα
′′(−)
aj (k)

∣∣f j

kλ(x)
∣∣2

, (38)

δEf r
a = −

∑
j

∑
kλ

α
′(+)
aj (k)

∣∣f j

kλ(x)
∣∣2

(
〈nkλ〉 +

1

2

)
, (39)

Q̇f r
a =

∑
j

∑
kλ

ckα
′′(+)
aj (k)

∣∣f j

kλ(x)
∣∣2

(2〈nkλ〉 + 1), (40)

α
′(∓)
aj (k) =

∑
b

α
j

abkba

2

[
P

1

k + kba

± P
1

k − kba

]
, (41)

α
′′(∓)
aj (k) = π

∑
b

α
j

abkba

2
[δ(k − kba) ± δ(k + kba)], (42)

where k = ωk/c, kab = ωab/c and 〈nkλ〉 is the average number of photons in the mode kλ.
Equations (37)–(40) are nothing but equations (22)–(25) applied to a neutral but polarizable
system interacting with the electromagnetic field. The validity of these equations, once
assumed the dipole approximation, is determined by the validity of condition (6). This implies
that the field correlation function in time CR

jj (τ ), obtained from equation (14), must have all its
characteristic frequencies much larger than any characteristic frequency of the system, so that
the correlation time τc obeys the condition: τc � 1/ω0, where ω0 is the largest characteristic
frequency of the system.



7350 T N C Mendes and C Farina

Equations (37) and (38) give the (rr) contributions to level shifts and energy rates of the
system and equations (39) and (40) give the corresponding (f r) contributions. We see that
(rr) contributions do not depend on 〈nkλ〉, which carries all information about the field state.
This information is concentrated on (f r) contributions. Of course, for 〈nkλ〉 = 0, there is still
a residual term which can be associated with the contribution of the vacuum fluctuations of
the field.

Functions α
′(+)
aj (k) and α

′′(+)
aj (k) appearing in the (f r) terms are nothing but the dispersive

and dissipative parts of the susceptibility of the system. In the (rr) contributions, however,
we have the functions α

′(−)
aj (k) and α

′′(−)
aj (k), which do not have a direct interpretation like

their corresponding ‘plus’ functions. The difference is only in the sign of the k − kba terms
for the first and k + kba for the second. But this fact will be crucial to determine the behaviour
of the dispersive interactions: it is precisely this difference of sign which makes possible the
existence of the dispersive van der Waals interaction. This fact will become clear when we
discuss the two-level system.

3. Calculation of the dispersive forces

In this section, we shall apply the expressions deduced in the previous section for level shifts
and energy rates of a polarizable system interacting with the electromagnetic field. We shall
discuss a two-level atom, considered as an isotropic system, in the presence of a perfectly
conducting wall.

Let us consider two parallel square plates with sides L fixed at z = 0 and at z = , where
L � , and a small polarizable system on the OZ axes at position z that satisfies the condition
0 < z � . Hence, for a given wave vector k, the quantized electric field (without sources) in
the region 0 < z <  is given by [35]

Ek‖n(r‖, z, t) = ı

(
4πh̄kc

L2

)1/2
{

a
(1)
k‖n

(
k‖
k‖

× ẑ
)

sin
(nπ


z
)

+ a
(2)
k‖n

[
ı
nπ

k

k‖
k‖

sin
(nπ


z
)

− ẑ
k‖
k

cos
(nπ


z
)] }

eı(k‖·r‖−ωkt)+ h.c., (43)

where

[
aλ

k‖n, a
λ′
k′

‖n′
] = [

a
†λ
k‖n, a

†λ′

k′
‖n′

] = 0, (44)

[
aλ

k‖n, a
†λ′

k′
‖n′

] = δλλ′δnn′δk‖k′
‖ , (45)

ω2
k

c2
= k2 = k2

‖ + (nπ/)2, (46)

k‖ = kxx̂ + kyŷ, r‖ = xx̂ + yŷ, (47)

with n being a non-negative integer number. The mode with n = 0 has an additional factor
1/

√
2 not shown. Using this expression for the field in the limit  → ∞, we shall be able to

calculate the desired dispersive potentials between the atom and the single wall at z = 0.
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3.1. Two-level system

First of all, let us assume isotropy, so that the polarizability defined previously in the text is
independent of the space direction, namely,

αj
ge = αge = −αeg = 2e2

3h̄ω0
|〈g|r|e〉|2 = α0, (48)

where |g〉 and |e〉 are the ground and excited states of the two-level system under consideration
with energies Eg and Ee, and ω0 is the transition frequency, given by ω0 = k0c = (Ee−Eg)/h̄.
Hence, equations (37) and (39) for level shifts take the form

δErr
g = δErr

e = −1

2

∑
kλ

α′
−(k)|fkλ(x)|2, (49)

δEf r
g = −δEf r

e = −
∑
kλ

α′
+(k)|fkλ(x)|2

(
〈nkλ〉 +

1

2

)
, (50)

α′
∓(k) = α0k0

2

(
P

1

k + k0
± P

1

k − k0

)
. (51)

Note that, while (rr) contribution for level shifts of |g〉 and |e〉 states are exactly the same,
(f r) contribution have the same magnitude but opposite signs. Using the expression (43) in
equations (49) and (50), taking the limit  → ∞ and considering a continuous spectra for the
field, we are faced with integrals of the form

α0k0

2
A(±)

λ (k0, f ) =
∫ ∞

0
dkf (k)α′

±(k) eıkλ, (52)

where λ > 0 is a real parameter. For an analytical function f satisfying the condition

lim
|Im[k]|→∞

|f (k)| e−λ|Im[k]| = 0

in the whole complex plane, it is possible to write

A(±)
λ (k0, f ) = ∓ıπf (k0) eık0λ +

∫ ∞

0

dk

k + k0
[f (k) eıkλ ∓ f (−k) e−ıkλ]. (53)

Hence, with the aid of the last result, the z-dependent parts of equations (49) and (50), which
give the dispersive potentials between the atom and the wall, when the average number of
photons per mode is independent of the polarization, 〈nkλ〉 = 〈nk〉, take the form

Vg(z, 〈n〉) = V rr
0 (z) + V

f r

0 (z) + V
f r

〈n〉 (z), (54)

Ve(z, 〈n〉) = V rr
0 (z) − V

f r

0 (z) − V
f r

〈n〉 (z), (55)

V rr
0 (z) = h̄ω0

8π

α0

z3
Hrr

0 (2k0z), (56)

V
f r

0 (z) = h̄ω0

8π

α0

z3

[
H0(2k0z) − Hrr

0 (2k0z)
]
, (57)

V
f r

〈n〉 (z) = 2h̄c

π

∫ ∞

0
k3α′

+(k)〈nk〉G(2kz) dk, (58)

G(x) = sin x

x
+ 2

cos x

x2
− 2

sin x

x3
, (59)
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Hrr
0 (x) = −π

(
cos x + x sin x − 1

2
x2 cos x

)
, (60)

H0(x) = (x2 − 2)F(x) + 2xG(x) − x, (61)

F(x) = Ci(x) sin x − si(x) cos x,G(x) = d

dx
F(x), (62)

si(x) = −π

2
+

∫ x

0
dt

sin t

t
, Ci(x) = γ + ln x +

∫ x

0
dt

cos t − 1

t
, (63)

where V rr
0 (z) and V

f r

0 (z) are the (rr) and (f r) terms of the vacuum contribution to the
interaction and γ is the Euler–Mascheronni constant. The term V

f r

〈n〉 (z) carries the information
about field state (thermal state, for example) and does not contribute when there is no real
photons in any mode of the field. For this last case, 〈nk〉 = 0, which means that the field is in
its vacuum state, we have

Vg(z, 0) = V rr
0 (z) + V

f r

0 (z) =: V0(z), (64)

Ve(z, 0) = V rr
0 (z) − V

f r

0 (z) = 2V rr
0 (z) − V0(z), (65)

for the ground state and excited state vacuum contributions to dispersive potentials,
respectively. Analysing the small and large distance limits, one may show that

• For k0z � 1 (short distance limit):

Ve(z, 0) � Vg(z, 0) = −h̄ω0

8

α0

z3
+ O(z−2). (66)

• For k0z � 1 (large distance limit):

Vg(z, 0) = −3h̄c

8π

α0

z4
+ O(z−6), (67)

Ve(z, 0) � 3h̄c

8π

α0

z4
+ h̄cα0k

4
0

cos(2k0z)

2k0z
. (68)

Equation (66) can be recognized as the interaction between the atom and the wall in
the London–van der Waals limit [4]. In this limit, both excited and ground state potentials
coincide and are mainly given by the (rr) contribution (only radiation reaction is important)
as one can easily verify from equation (56) when k0z � 1.

Equation (67), which gives the ground state potential at large distances, is the well-known
Casimir–Polder potential [3]. However, by equation (68), we see that in this limit the excited
state potential does not coincide with the ground state potential anymore. Apart from a
Casimir–Polder term with opposite sign, there is an oscillating one that falls as 1/z [16, 35]
and since the Casimir–Polder term falls as 1/z4, the oscillatory term dominates over all large
distance limits and the interaction presents an infinite number of potential wells.

In order to get a better understanding about last results, let us come back to
equations (49) and (50). Making 〈nkλ〉 = 0, the ground and excited state level shifts of
the atom take the form

δEg = δEf r
g + δErr

g = −α0k0

2

∑
kλ

|fkλ(x)|2
k + k0

, (69)



Atom–wall dispersive forces from the master equation formalism 7353

δEe = δEf r
e + δErr

e = −α0k0

2
P

∑
kλ

|fkλ(x)|2
k − k0

. (70)

From last equations we clearly see that the potential associated with the ground state depends
only on the non-resonant part of the atomic polarizability, while the potential associated with
the excited state depends only on the resonant part. Since van der Waals force is related to
level shift of the ground state of the atom [36], it may be called the dispersive non-resonant
interaction. On the other hand, for obvious reasons, the excited state potential may be called
as the dispersive resonant interaction. Last equations permit us also to understand why the
resonant interaction is very much stronger than van der Waals interaction at large distances
and practically equals to it at short distances. The position-dependent part of the modulus
square of the amplitude of a field mode (subject to boundary conditions) which appears in the
sums of equations (69) and (70), is usually an oscillating function of products of characteristic
distances and the frequency associated with the mode. In our case the characteristic distance
is z, which means that for high frequencies such that k > 2π/z, the oscillatory behaviour
of the summands leads to a small contribution to the total sum compared to the contribution
coming from the low frequencies (k < 2π/z).

Taking into account that the number of modes per frequency is proportional to k2, at short
distances virtual photons with high frequencies (k ∼ 2π/z � k0) are much more important
to the interaction than those with low frequencies (k � k0), so that k0 may be neglected in
denominators of the sums in equations (69) and (70) and the level shifts will be approximately
the same. However, as the distance between the atom and wall becomes large, smaller and
smaller frequencies become important to the interaction. For the ground state contribution,
this leads to a monotonic variation of the interaction with the position. However, for the
excited state contribution, when the distance becomes of the order 2π/k0, there is a strong
increasing of the interaction, so the summand becomes singular at the frequency ω0. At very
large distances, small frequencies become more important and both ground and excited state
potentials become weak, but the excited state potential still remains very much stronger than
the ground state potential.

One can get a simple interpretation of this fact. Looking at equation (68) more carefully
we easily see that a maximum and a minimum of the potential occur, respectively, at

z � n
λ0

2
(maximum), z �

(
n − 1

2

)
λ0

2
(minimum), (71)

where λ0 = 2πc/ω0 is the transition wavelength and n � 1 is an integer (of course, these
approximations will be better for higher values of n). Equations (71) are nothing but the
conditions for the existence of stationary waves with wavelength λ0 in the ‘cavity’ defined by
the atom and the wall: the former is the resonant condition for a one-dimensional cavity with
the ‘closed ends’ and the latter is the resonant condition for a cavity with one ‘closed end’
and one ‘opened end’. Then, it is intuitive why the interacting potentials have the maximum
magnitude, or, in other words, a maximum response at that distances, and not at others.

In figure 1 we show the exact potentials given by equations (64) and (65) and the (rr)

and (f r) contributions given by equations (56) and (57). As we pointed out previously, the
ground and excited state potentials are approximately the same as the London–van der Waals
potential (66) at short distances. At large distances, the excited state potential has an oscillatory
behaviour while the ground state potential is given by the Casimir–Polder potential (67).

We saw that at short distances the radiation reaction on the polarizable system is the
dominant contribution to the interaction, a well-established result in the literature [10, 15, 16].
However, the Casimir–Polder potential is usually interpreted as a stark shift due to the field
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Figure 1. Dispersive potentials associated with the ground (van der Waals interaction) and excited
(resonant interaction) states with corresponding (f r) and (rr) contributions. The total spontaneous
emission rate as a function of z, 
spt(z), is also shown. The potentials are in units of h̄cα0k

4
0 and

the spontaneous rate is in units of 2cα0k
4
0 , which is the value for the spontaneous rate in the free

space.

fluctuations mainly [16]. It is usual to adopt expressions similar to equation (50), for 〈nkλ〉 = 0,
in order to calculate the Casimir–Polder potential only replacing the atomic polarizability α′

+(k)

by its static value α′
+(0) = α0 in the summation [37]. This procedure can be justified if we

invoke the argument that frequencies smaller than k ∼ 2π/z � k0 give the main contribution
to the interaction, so that the substitution of α′

+(k) by α0 causes a little error but gives the
correct leading term of the potential (see papers by Ford [38], which make a careful discussion
about this point).

Now, despite the success of this procedure, this seems to hide the true physical content
behind it. As one can see from figure 1, both (rr) and (f r) contributions are of the same
order of magnitude for distances z > 0.2λ0, but have opposite signs. For this reason, the
excited state interaction given by equation (65) is about two times (rr) contribution in the
above-mentioned interval.

However, for the ground state potential given by (64), the (rr) and (f r) contributions
almost cancel each other, leading to a small potential value which is precisely the van der
Waals interaction, which reduces to the Casimir–Polder potential for z > λ0. Then, both
vacuum field fluctuations and radiation reaction play a crucial role for the interaction at large
distances and the interpretation of the Casimir–Polder interaction as a shift due only to field
fluctuations is not complete.

In order to conclude this section, let us make a comment about the exchange energy rates
for the two-level system. From equations (38) and (40), one may easily show that Q̇g = 0 and

Q̇e = −πα0k
2
0c

∑
kλ

|fkλ(x)|2δ(k − k0), (72)

where we considered the field in its vacuum state. For the geometry treated here, namely, with
a two-level atom at a distance z from an infinite perfectly conducting wall, the last equation
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leads to [37]

Q̇e = −h̄ω0
spt(z), 
spt(z) = 
spt
e→g[1 − G(2k0z)], (73)

where 
spt(z) is the total spontaneous emission rate of the atom in the presence of the wall and



spt
e→g = 2cα0k

4
0 = 4α|〈e|r|g〉|2ω3

0/3c2 is the spontaneous emission for the atom in the empty
space, α = e2/h̄c � 1/137 being the fine structure constant. Then, the life time of the excited
state of the atom is of the order 1/
spt(z), so that the resonant interaction is unstable and at
a finite time (generally about 10−7s in the visible region [39]) the van der Waals interaction
takes place.

Equation (73) for 
spt(z) is also plotted in figure 1. The behaviour of the spontaneous
emission is similar to the behaviour of the resonant potential. However, we should note
that there is a difference of phase between the potential and the spontaneous emission
of approximately π/2. Corresponding to a maximum or a minimum of the potential, the
spontaneous emission is exactly the same as if the atom was in the empty space. Somehow
this could have been anticipated once for these cases, from conditions (71), there is a node
on the wall. One may also note that the fact that the potential is in quadrature with the
spontaneous emission rate may be understood if we remember that these quantities are related
to real and imaginary parts, respectively, of the susceptibilities (of the atom and the field) and
these quantities are, of course, in quadrature.

3.2. Thermal corrections to the interaction

Let us now turn our attention to the thermal corrections of dispersive interactions by considering
both ground and excited states of the atom. There are many works in the literature treating
thermal corrections to dispersive van der Waals forces, see for instance [5, 9, 21] to mention
just a few. However, we have not found works that have analysed also thermal corrections to
the resonant interaction or the high temperature limit for dispersive interaction between the
two-level system and the perfectly conducting wall. This is our aim in this section.

From equations (54) and (55), one may see that the only term that accounts for corrections
to the interaction due to non-trivial states of the field is V

f r

〈n〉 (z), which is given by equation (58).
For a thermal state of the field at temperature T, we write

V
f r

〈n〉 (z) = VT (z) = 2h̄c

π

∫ ∞

0

k3α′
+(k)

ekλT − 1
G(2kz) dk, (74)

where λT = h̄c/kBT is the thermal length, which defines the length scale beyond which
thermal contributions pass to dominate over vacuum contribution of the van der Waals
interaction. At room temperature, λT � 7.63 µm.

In the low temperature limit, k0λT � 1, we have already calculated the last integral in
both small and large distance limits in a previous work [29], which for thermal corrections are
defined by conditions z � λT and z > λT , respectively.

For z � λT , we have

VT (z) � C(T ) − (2π)5

315

h̄cα0

λ6
T

z2, (75)

where C(T ) = 2π3h̄cα0/45λ4
T is independent of z and does not contribute to the force. The

above result, that represents a small correction for the vacuum contribution, fits well the exact
potential given by (74) within an error smaller than 3% for z < 0.10λT and, since it does not
depend explicitly on λ0, it is valid for both London–van der Waals and Casimir–Polder limits3.

3 For the Casimir–Polder limit, the condition λ0 < z � λT must be valid.
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For z ∼ λT or larger, we have

V0(z) + VT (z) � VLif(z, T ) = −kBT

4

α0

z3
, (76)

which is exactly the Lifshitz asymptotic result [5], which we hereafter call only Lifshitz’s
potential for simplicity. If we consider only the ground state interaction, last equation fits the
exact potential within an error smaller than 0.1% for z > λT .

The ground and excited state potentials with the corresponding thermal contributions are

Vg(z, T ) = V rr
0 (z) + V

f r

0 (z) + VT (z) =: V (z, T ), (77)

Ve(z, T ) = V rr
0 (z) − V

f r

0 (z) − VT (z) = 2V rr
0 (z) − V (z, T ). (78)

Considering the atom in thermal equilibrium with the field, we must consider the thermal
average value of last potentials, since this average is the observed potential. If p is the
probability of the atom to be found in its ground state, 1 − p is the probability of finding it in
its excited state. In a thermal equilibrium at a temperature T, we have p = (1 + e−k0λT )−1, so
that the average potential takes the form

V̄ (z, T ) = tanh

(
1

2
k0λT

)
V (z, T ) +

2V rr
0 (z)

ek0λT + 1
. (79)

At low temperatures, k0λT � 1, one has

V̄low(z, T ) � V (z, T ) − 2 e−k0λT
[
V

f r

0 (z) + VT (z)
]
.

The average potential is given by the ground state potential minus twice the (f r) contribution
weighted by the exponential factor e−k0λT � 1, so that the average potential is practically due
to the ground state potential only, as expected: the thermal photons do not have enough energy
to excite the transition and populate the excited state, which makes negligible its contribution
to the interaction. For example, at room temperature and for a transition frequency in the
visible region, k0 � 10µm−1, the factor multiplying the (f r) term is about 7.1 × 10−34.

For the high temperature limit, however, things are different. In this limit, the excited
state gives an important contribution to the interaction. In order to account the excited state
influence on the interaction at high temperatures, k0λT < 1, it is necessary to recalculate the
integral in (74) with the help of Bernoulli’s numbers, defined by the expansion [40]

ξ

eξ − 1
= 1 − 1

2
ξ +

∞∑
n=1

B2n

(2n)!
ξ 2n.

Substituting the last expression into equation (74), we obtain VT (z) = h̄	
(1)
T + h̄	

(2)
T + h̄	

(3)
T ,

h̄	
(1)
T = kBT

4πz3

∫ ∞

0
x2α′

+(x)G(x) dx, (80)

h̄	
(2)
T = − h̄c

16πz4

∫ ∞

0
x3α′

+(x)G(x) dx = −V
f r

0 (z), (81)

h̄	
(3)
T = kBT

4πz3

∞∑
n=1

B2n

(2n)!
η2n

∫ ∞

0
x2n+2α′

+(x)G(x) dx, (82)

where η = λT /2z and x = 2kz. Integrals in equation (82) may be easily calculated with the
help of equation (53), which leads to

h̄	
(3)
T = V rr

0 (z)

[
2

k0λT

− coth

(
1

2
k0λT

)]
. (83)
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The integral in equation (80) may be also calculated in a simple manner from equation
(53), but note that the function f (x) = x2G(x) is not analytical at x = 0 and a direct
application of (53) depends on the analyticity of f (x) over all complex planes. This problem
may be avoided by splitting the integral in (80) as follows:∫ ∞

0
x2α′

+(x)G(x) dx = πα0

(
x0 sin x0 − 1

2
x2

0 cos x0

)
− 2

∫ ∞

0
α′

+(x)
sin x

x
dx, (84)

where x0 = 2k0z. The last term in the previous equation can be calculated as∫ ∞

0
α′

+(x)
sin x

x
dx = α0

∫ ∞

0

sin x

x
dx − 1

x0

∫ ∞

0
α′

−(x) sin x dx = πα0

2
(1 − cos x0). (85)

Combining equations (85) and (84), equation (80) may be written as

h̄	
(1)
T = −kBT

4

α0

z3
− 2

k0λT

V rr
0 (z) (86)

and the ground state potential (77) takes the form

V (z, T ) = −kBT

4

α0

z3
− 2V rr

0 (z)

ek0λT − 1
. (87)

Inserting the last result into equation (79), the average potential may finally be written as

V̄ (z, θ) = −h̄ω0

8

α0

z3
θ tanh(1/θ), (88)

where we defined the normalized temperature θ = 2kBT /h̄ω0 = 2/k0λT . We derived
equation (88) by assuming the high temperature limit, which means θ ∼ 1 or higher. However,
if we consider the opposite limit, θ � 1, we easily see that equation (88) reduces to equation
(76),

V̄ (z, T ) = −kBT

4

α0

z3
(1 − 2 e−k0λT + 2 e−2k0λT + · · ·) � −kBT

4

α0

z3
,

which is valid for all distances larger than the thermal length, that is, for z > λT . Hence,
equation (88), which takes into account the excited state contribution, is also valid for all
distances larger than the thermal length.

In figure 2 we plot the potentials (88) and (76) normalized by the potential (66). At low
temperatures, as we have already anticipated, the excited state plays no role in the interaction
and the ground state potential, which is given by Lifshitz’s potential (76), coincides with the
average potential. However, at high temperatures, the difference between Lifshitz’s and the
average potentials is evident, as can be checked in figure 2 for values of θ greater than θ �
0.4 approximately, which is equivalent to a temperature about 2800K × 1µm/λ0; at this point
the relative error between the two potentials, defined as |	V |/VLif , is about 1.3% (for θ = 1.0
the error is already �24%).

Nevertheless, the most interesting thing that happens as the temperature becomes higher
is that the average potential saturates at a value independent of the temperature. In this case,
the potential can be approximated by

V̄ (z, θ) = −h̄ω0

8

α0

z3

(
1 − 1

3θ2
+

2

15θ4
− · · ·

)
, (89)

which coincides exactly with the potential (66) in the limit of very high temperatures, θ → ∞.
As mentioned before, expression (66) gives the vacuum term of the dispersive potential

between the atom and the wall, for both ground and excited states of the atom, in the small
distance limit (0 < z � λ0). Further, when the system interacts with the field in a thermal
state, thermal corrections to the potential become important only for distances larger than the
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Figure 2. Dispersive potentials between a two-level atom and a perfectly conducting wall
in a thermal bath at temperature T. We plot the temperature dependence of the thermal-
averaged potential V̄ (z, T ), as well as the potential associated with the ground state only
VLif(z, T ), normalized by −h̄ω0α0/8z3 (Vmean(θ) and VLif(θ) respectively). The relative error
|	V (θ)|/VLif(θ) is also plotted. In the above figure it is assumed that z > λT and θ = 2kBT /h̄ω0.

thermal length λT . Equation (89) is approximately valid for z > λT at very high temperatures,
θ � 1. This condition necessarily implies λT � λ0. Hence, combining the last condition with
the two just mentioned conditions for the separation z in which potentials (66) and (89) may
be applied, one can see that the London–van der Waals potential describes the interaction at
very high temperatures in the interval 0 < z < ∞. In other words, for very high temperatures,
the London–van der Waals potential is valid for all distance regimes. This is a quite curious
result.

However, though expression (66) and the leading term of (89) are the same, there are some
important differences in the physics behind them. The former is interpreted as the interaction
between the instantaneous dipole and its mirror image so that retardation does not play any role
at all on interaction and, as already mentioned, the main contribution is due to the radiation
reaction only. The second one is the net result of the competition of the fluctuations of the
field acting on the ground and excited states of the atom simultaneously.

From equations (77) and (78), one can see that thermal corrections have opposite signs
and since at high temperatures the probability of finding the system in its ground or excited
states is practically the same, p � 1 − p � 0.5, the (f r) terms cancel each other and the
temperature dependence tends to disappear in the average potential, as it occurs in (89). We
also see that in equations (77) and (78) the (rr) terms are the same, which leads to a net
average potential different of zero . Hence, both equations (66) and (89) come from the
radiation reaction, though from different ways. The fact that retardation does not seem to have
any effect on the average potential is a feature of thermal fluctuations which, for distances
larger than λT , destroy the influence of the finiteness of the velocity of light on the interaction,
as one can see also in (76).

As a final comment, one may argue that equation (89) is an unrealistic one because there
are not systems in the real world which can be treated as a two-level system at very high
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Figure 3. System which simulates a two-level one and that can be used to check our result (88).
Levels Ee and Eg are sufficiently close to each other so that thermal fluctuations can populate
significantly both of them: Ee − Eg ∼ kBT � 1/40 eV at room temperature. Level Ec is so far
from Ee and Eg (Ec −Ee � kBT ) that, in practice, it cannot be populated by thermal fluctuations.

temperatures. Actually, all known systems usually have an infinite number of energy levels
and the coupling between them at high temperatures should not be neglected, so that a different
behaviour of that preconized for the two-level system is expected [12]. Even though, the two-
level system model showed to be a very useful one in the study of the dispersive interactions
and, particularly, in the comprehension of the roles played by (rr) and (f r) contributions.

Though equation (89) is, in some sense, unrealistic, the same cannot be said about
equation (88). It is plausible to consider a system where the two lowest levels |g〉 and |e〉
are far enough to a third level |c〉, as sketched in figure 3. If the largest dimension D0 of
this system is much smaller than the transition wavelength, D0 � 2πh̄c/(Ee − Eg), and the
temperature satisfies the condition Ee − Eg ∼ kBT � Ec − Ee, then equation (88) will be
valid for a relatively wide range of temperature and a deviation of the behaviour predicted
by equation (76), like that shown in figure 2, should be observed for not too high values of
temperature.

4. Conclusions

In this work, we applied the master equation formalism, widely used in quantum optics, in
order to obtain the general expressions for the level shifts and the exchange energy rates of a
multi-level system interacting with the radiation field in the dipole approximation. We then
particularized our discussion to a two-level atom in the presence of a perfectly conducting
wall. We studied the dispersive potentials, between the atom and the wall, for the ground and
excited states of the atom, which can be associated with the van der Waals and the resonant
interactions, respectively. All distance regimes as well as the low and high temperature limits
were treated. Considering the ground state potentials in the short distance limit, we reobtained
the London–van der Waals potential given by (66), showing that it may be explained mainly
by the reservoir reaction (radiation reaction) contribution to the level shift, as it is well accept.
For large distances, we rederived the Casimir–Polder interaction and showed that it cannot be
considered as a direct result of the vacuum fluctuations only, as usually interpreted. Otherwise,
we showed that the field fluctuations and the radiation-reaction contributions are of the same



7360 T N C Mendes and C Farina

order and too much stronger than the Casimir–Polder potential, but these effects ‘cancel each
other’ leaving a small observed interaction.

For the case of the excited state potential, we emphasized that the maximum magnitudes
of the potential occur approximately at the positions of resonant condition for stationary waves
with wavelength λ0 in the ‘cavity’ defined by the atom and the wall. Taking into account the
thermal corrections to the interaction, we rederived the short and large distance potentials at
low temperatures, where the excited state contribution can be disregarded. However, for high
temperatures, since the excited state contribution should not be neglected anymore, we showed
that its inclusion may cause considerable deviations from the Lifshitz asymptotic potential.
A curious result that we found is that at very high temperatures the potential saturate in a
temperature-independent value which is exactly equal to the London–van der Waals potential
but, now, valid for all distance regimes.
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